分布式缓存
基于Redis集群解决单机Redis存在的问题
- 数据丢失问题:实现Redis数据持久化
- 并发能力问题:搭建主从集群,实现读写分离
- 故障恢复问题:利用Redis哨兵,实现健康检测和自动恢复
- 存储能力问题:搭建分片集群,动态扩容
# Redis持久化
# RDB持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
执行时机
- 执行save命令
save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。
- 执行bgsave命令
这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。
- Redis停机时
Redis停机时会执行一次save命令,实现RDB持久化。
- 触发RDB条件时
redis.conf配置触发RDB机制,可以配置多久内有多少个key发生变更,则执行bgsave命令
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
- 当主进程执行读操作时,访问共享内存;
- 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
# AOF持久化
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
# Redis主从
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
# 全量同步
主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:
- Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
- offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。
master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。
master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。
# 增量同步
除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。
当大哥收到数据变更的命令时,以及每隔一段时间,将消息通知小弟来我这复制。
repl_baklog
slave 的offset 不断追赶 master 的offset
当master的offset 超过 slave的offset太多,那salve节点进行全量同步。
# Redis哨兵
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
哨兵的作用如下:
- 监控:Sentinel 会不断检查您的master和slave是否按预期工作
- 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
- 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
# 监控
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
# 故障恢复
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
- 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
- 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
- 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
- 最后是判断slave节点的运行id大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
- sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
- sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
- 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
# Redis分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
海量数据存储问题
高并发写的问题
使用分片集群可以解决上述问题,如图:
分片集群特征:
集群中有多个master,每个master保存不同数据
每个master都可以有多个slave节点
master之间通过ping监测彼此健康状态
客户端请求可以访问集群任意节点,最终都会被转发到正确节点